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1 Duality: Deriving Properties of s Via Properties of s∗

1.1 Recap

Our setup from last time is a system of n “non-interacting particles.” M is the phase
space R3 × R3, λ = m3 ×m3 is a σ-finite but not finite measure, and ϕ : M → [0,∞) is
ϕ(r, p) = ϕpot(r) + 1

2 |p|
2 (potential energy + kinetic energy). We will assume ϕ is lower

bounded and normalize ϕ so that minϕ = ess minϕ = 0. Then, for open interval I ⊆ R,

λ×n

({
(r1, . . . , rn, p1, . . . , pn) :

1

n
Φn(r1, . . . , pn) :=

1

n

n∑
i=1

ϕ(ri, pi) ∈ I

})

= exp

(
n · sup

E∈I
s(E) + o(n)

)
The intuition is that

λ×n
({

1

n
Φn ≈ E

})
≈ en·s(E)+o(n).

We also have that
s(E) = inf

β∈R
{s∗(β) + βE},

s∗(β) = sup
E≥0
{s(E)− βE} = log

∫
e−βϕ dλ,

which is assumed to be < ∞ for all β > 0. Next, we need to understand where these inf
and sup are achieved.

1.2 Supporting tangents and conjugacy between β and E

Definition 1.1. A supporting tangent to s at E is a line touching the graph of s at E
and bounding from above.
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Its slope β must satisfy

s(E′) ≤ s(E) + β(E′ − E) ∀E′.

Equivalently,
D+s(E) ≤ β ≤ D−s(E)

or
s(E) = s∗(β) + βE.

Up to a sign, this last equation is symmetric between “conjugate variables” β and E:

s(E) + (−s∗(β)) = βE.

Here, s and (−s∗) are both upper semicontinuous, and they play the same role in this
equation. So, by symmetry, β is a slope for a supporting tangent line to s at E iff E is a
slope for a supporting tangent line to −s∗ at β. That is,

D+s(E) ≤ β ≤ D−s(E) ⇐⇒ D−s
∗(β) ≤ −E ≤ D+s

∗(β).

This is the key observation for deriving smoothness and differentiability properties of s
from those of s∗.
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1.3 Leveraging conjugacy to prove differntiability and strict convexity
of s

Here is our picture relating s and s∗:

Here are some main features to be proved about this picture:

Proposition 1.1.

s(E)→

{
∞ as E →∞
log λ({ϕ = 0}) as E ↓ 0.

The first case implies s is strictly increasing. Also, it could be in this picture (if
λ({ϕ = 0}) = 0) that the graph gets steeper and steeper and never hits the vertical axis.

Proof. First, we have

s(E) = inf
β>0

{
log

∫
e−βϕ dλ︸ ︷︷ ︸

s∗(β)

+βE

}
.

First, here are some properties of s∗:

s∗(β)→

{
log λ({ϕ = 0}) as β →∞
∞ as β ↓ 0.

The first of these follows since ϕ ≥ 0, β1 > β2 > 0 implies e−β1ϕ ≤ e−β2ϕ. As β →
∞, e−βϕ ↓ 1{ϕ=0}. By the dominated convergence theorem, s∗(β) → log

∫
1{ϕ=0} dλ =

log λ{ϕ = 0}.
Secondly, we have λ({ϕ ≤ M}) → ∞ as M → ∞, so for all K > 0, pick M so that

λ({ϕ ≤M}) ≥ K. Now pick β so small that e−βM ≥ 1/2, so now

s∗(β) = log

∫
e−βϕ dλ
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= log

∫
{ϕ≤M}

e−βM dλ

≥ log

(
1

2
λ({ϕ ≤M})

)
≥ log

(
K

2

)
K→∞−−−−→∞.

For the rest, here are some pictures (which can be justified with some εs and δs):

So s(E) = minβ>0{s∗(β) +βE} is close to infβ>0 s
∗(β) = log λ({ϕ = 0}) = limE↓0 s(E)
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if E is small enough. Similarly, if E is very big,

s(E) = min
β>0
{s∗(β) + βE} → ∞.

as E →∞.

Lemma 1.1. s is differentiable on (0,∞) (i.e. no corners).

Proof. s is differentiable at E iff D+s(E) = D−s(E) = s′(E). By our previous discussion,
this is equivalent to if there is only one slope β for a supporting tangent at E. This is
equivalent to if for this E, the solution to s(E)+(−s∗(β)) = βE in β is unique. Equivalently,
this is when infβ>0{s∗(β) + βE} is achieved at exactly one β. This occurs precisely when
s∗(·) + E(·) is strictly concave where the minimum is achieved. Quantifying over E this
tells us that s is differentiable if and only if s∗ is strictly convex.

Now let’s show that s∗ is strictly convex: Suppose α > β > 0 and 0 < t < 1. Then

s∗(tα+ (1− t)β) = log

∫
e(−tα−(1−t)β)ϕ dλ

Apply Hölder’s inequality with exponents 1/t and 1/(1− t):

≤ t log

∫
e−αϕ dλ+ (1− t) log

∫
e−βϕ dλ,

with equality iff e−αϕ is a constant multiple of e−βϕ. This is possible only if ϕ is constant
a.e., which is not true.

Proposition 1.2. s is strictly concave on [0,∞).

Proof. As before, this is equivalent to s∗(β) = log
∫
e−βϕ dλ being differentiable. This

holds by differentiating under the integral.
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